kali metal and ammonium halide solubilities decreasing with solvent in the order: ethylenediamine (4) > DMF (6) >3Me20x > 3tBu20x > acetonitrile (4).

These data show that 3Me20x and tBu20x may be suitable media for conductance (2), spectroscopy, and acid-base equilibrium studies. Due to their relatively high dielectric constants and large polarities, these cyclic urethanes have promise as electrolytic solvents for a wide variety of applications.

Acknowledgment

Grateful appreciation is extended to D. Mincey for his aid in solvent preparation and purification.

Literature Cited

- (1) Davis, G. M., Taphorn III, J. E., Caruso, J. A., J. Pharm. Sci., 63 (7), 1136 (1974).
- (2) Huffman, Jr., H. L., PhD dissertation, University of Kentucky, Lexington, Ky., 1972; Barker, B. J., Huffman, Jr., H. L., Sears, P. G., J. Phys. Chem., 78, 2689 (1974).
- Huffman, Jr., H. L., Sears, P. G., J. Sol. Chem., 1, 187 (1972). Linke, W. F., Ed., "Solubilities of Inorganic and Metal-Organic Com-(4)
- Linke, W. F., Ed., "Solubilities of Inorganic and Metal-Organic Com-pounds", Vol II, American Chemical Society, Van Nostrand, Princeton, pounds N.J., 1965.
- (5) Oda, R., Mizanoki, M., Okomo, M., Bull. Chem. Soc. Jpn., 35, 1309 1962)
- (6) Pistoia, G., Pecci, G., Scrosati, B., Ric. Sci., 37 (12), 1167-72 (1967).

Received for review March 26, 1975, Accepted September 15, 1975,

Solubility of Methane in Distilled Water and Seawater

Sachio Yamamoto,¹ James B. Alcauskas, and Thomas E. Crozier²

Chemistry and Environmental Sciences Division, Naval Undersea Center, San Diego, Calif. 92132

Bunsen solubility coefficients for methane in distilled water and in seawater at three salinities were determined with an estimated accuracy of 0.5%. The experimental data were fit by the least-squares method to an equation established by Weiss. A table of Bunsen solubility coefficients covering the temperature range -2° to 30° C and the salinity range 0-40 parts per thousand was calculated from the fitted equation. For seawater of salinity 34‰, the Bunsen coefficients ranged from 0.04489 at 0°C to 0.02368 at 30°C. Solubility values for distilled water were in agreement with those reported by Bunsen and Claussen and Polglase but were 3-5% higher than those of Winkler and Morrison and Billet.

During the past several years, there has been increasing interest in the oceanic distribution of methane (1, 11, 12, 15). Concentrations of methane in the atmosphere and seawater were measured by Swinnerton and his coworkers (11), but they were unable to conclude from their observations whether the ocean is acting as a source or sink for this gas. More recently, Swinnerton and Lamontagne (12) proposed an empirical relationship involving the ratio of the measured methane concentration and its baseline concentration in seawater and similar ratios for ethane and propane as an index of contamination for hydrocarbon pollution. Proper interpretation and use of such information require accurate values for the solubility of methane in seawater. This paper reports the measurement of Bunsen solubility coefficients of methane in distilled water and in seawater at three salinities.

Methane solubilities in distilled water have been reported by a number of workers (2, 3, 9, 18). The results of Bunsen (2) and Claussen and Polglase (3) are about 3-5% higher than those of Winkler (18) and Morrison and Billet (9). Measurements were made in NaCl solutions by Morrison and Billet (9) and by Mishnina et al. (7, 8). The latter workers made measurements in NaCl solutions ranging from 1.00 to 5.31M which is considerably higher than the range of salinities encountered in seawater. Measured solubilities of methane in seawater have not been reported previously. Calculated solubilities were reported by Atkinson and Richards (1), and Weiss (14) made measurements at one salinity and one temperature.

Experimental

Research grade methane gas (Linde Specialty Gas, 99.99% purity) was used for all measurements. The gas was passed through a tube of Ascarite to remove CO₂ prior to use. Seawater was collected, prepared, and degassed as described by Crozier and Yamamoto (4).

Solubility measurements were made by the Scholander microgasometric technique (10) as modified by Douglas (5), using the procedure described previously (4). Measurements were made at several temperatures for waters of a given salinity. Saturation halftimes for distilled water at 11°C was 2.5 min, and for seawater (27.8‰) at 30°C, 4 min. The solution was allowed to equilibrate at least 45 min to ensure complete mixing.

The volumes of absorbed gas and of the water were measured. Bunsen solubility coefficients, β , were calculated from the observed volumes (5). β is defined as the volume of gas (corrected to standard temperature and pressure) absorbed in a unit volume of water at the measurement temperature when the partial pressure of the gas is 760 mm. The calculated solubilities were corrected for the effect of dissolved gas on the volume of the aqueous phase by using a value of 37 cm³ for the partial molal volume of methane (6). The corrections increased the solubility coefficients by about 0.16%.

Results and Discussion

The experimental Bunsen solubility coefficients for methane in distilled water and seawater at three salinities are given in Table I.

The Bunsen solubility coefficient can be expressed as a function of temperature and salinity as follows (13):

$$\ln \beta = A_1 + A_2(100/T) + A_3 \ln (T/100) + S[B_1 + B_2(T/100) + B_3(T/100)^2] \quad (1)$$

where A and B are constants. T is temperature in degrees Kelvin, and S is salinity in parts per thousand. The constants

To whom correspondence should be addressed.

² Present address, Institute of Paper Chemistry, Appleton, Wis. 54911.

were calculated by fitting the experimental data to Equation 1 by the method of least squares (4). Values of the constants obtained from the fit are shown in Table II. These constants were substituted back into Equation 1, and Bunsen solubility coefficients for the temperature range -2° to 30°C and salinity range 0-40 parts per thousand were calculated (Table III).

Percent deviations of Bunsen solubility coefficients ob-

Table I. Experimental Bunsen Solubility Coefficients for Methane in Distilled Water and Seawater

Salinity	Temp, °C	β	Temp, °C	β	Temp, °C	β
0.0	0.76	0.05592	10.93	0.04216	18.02	0.03606
	0.78	0.05612	10.93	0.04242	24.10	0.03196
	0.79	0.05613	10.94	0.04224	24.11	0.03192
	0.80	0.05600	10.94	0.04220	24.15	0.03189
	0.80	0.05591	10.94	0.04238	24.16	0.03211
	0.81	0.05604	10.95	0.04224	24.17	0.03200
	4.92	0.04957	10.95	0.04226	29.52	0.02915
	4.94	0.04963	10.96	0.04252	29.54	0.02913
	4.95	0.04973	17.99	0.03606	29.54	0.02915
	4.96	0.04963	18.00	0.03603	29.54	0.02911
	4.97	0.04968	18.01	0.03619	29.55	0.02901
	10.90	0.04235	18.02	0.03607		
27.738	2.07	0.04431	9.54	0.03611	20.05	0.02901
	2.08	0.04433	9.55	0.03640	20.20	0.02905
	2.08	0.04418	9.55	0.03667	20.21	0.02919
	2.09	0.04412	9.55	0.03649	21.40	0.02902
	2.09	0.04410	9.56	0.03653	21.40	0.02895
	2.09	0.04410	9.75	0.03620	21.70	0.02902
	2.15	0.04420	15.00	0.03238	25.15	0.02664
	2.40	0.04385	15.00	0.03213	25.17	0.02645
	2.48	0.04394	15.00	0.03212	25.20	0.02641
	9.45	0.03650	15.00	0.03204	25.20	0.02632
	9.45	0.03657	15.10	0.03218	25.25	0.02644
	9.45	0.03637	15.10	0.03213	25.25	0.02621
	9.45	0.03626	15.10	0.03236	25.30	0.02640
	9.45	0.03659	15.10	0.03200	25.30	0.02646
	9.45	0.03660	15.10	0.03205	25.35	0.02659
	9.45	0.03648	20.00	0.02918	25.40	0.02658
	9.45	0.03669	20.00	0.02916	25.50	0.02609
	9.46	0.03670	20.00	0.02918	25.60	0.02636
	9.53	0.03631	20100	0102010	20100	0.02000
33.461	1.60	0.04305	1.65	0.04282	1.73	0.04291
	1.60	0.04299	1.70	0.04301	1.79	0.04312
	1.60	0.04294	1.70	0.04302	1.79	0.04278
	1.60	0.04304	1.70	0.04298	1.80	0.04287
33.515	6.85	0.03706	7.42	0.03681	13.48	0.03218
33.313	7.25	0.03705	7.42	0.03707	13.48	0.03214
	7.33	0.03687	7.45	0.03680	13.48	0.03208
	7.35	0.03712	7.45	0.03693	13.53	0.03214
	7.35	0.03680	7.47	0.03677	13.53	0.03207
	7.35	0.03682	7.50	0.03698	13.53	0.03210
	. 7.40	0.03692	7.60	0.03687	13.53	0.03210
	7.42	0.03682	7.64	0.03704	13.54	0.03210
	7.42	0.03690	7.04	0.03704	15.54	0.03210
22 620			10 66	0 0 0 0 0 0	24.05	0.005.79
33.629	0.73 0.78	0.04409 0.04388	18.65	0.02889	24.85	0.02578
			18.65	0.02898	24.85	0.02585
	0.79	0.04396	18.66	0.02886	24.85	0.02573
	0.81	0.04396	18.70	0.02897	24.85	0.02579
	0.81	0.04389	18.70	0.02895	24.88	0.02583
	6.65 6.65	0.03742	18.70	0.02880	29.46	0.02420
	6.66	0.03771	18.70	0.02893	29.46	0.02412
	6.74	0.03767 0.03700	24.80	0.02584 0.02582	29.47	0.02402
			24.80		29.49	0.02406
	6.75	0.03739	24.83	0.02580	29.51	0.02409
	18.60	0.02902	24.85	0.02578	29.54	0.02405
	18.60 18.62	0.02893	24.85	0.02563	29.56	0.02418
		0.02899	15 00	0.00001	04.00	0 00470
39.379	10.30 10.35	0.03287 0.03306	15.09	0.02981	24.90	0.02479
			15.09	0.02934	24.95	0.02477
	10.35	0.03261	15.09	0.02973	24.95	0.02459
	10.35	0.03307	20.00	0.02684	24.95	0.02472
	10.35	0.03310	20.00	0.02698	29.96	0.02248
	10.35	0.03271	20.05	0.02696	29.96	0.02292
	10.35	0.03291	20.09	0.02673	29.96	0.02288
	10.35	0.03315	20.10	0.02699	29.96	0.02285
	14.81	0.02987	20.80	0.02685	29.96	0.02266
	14.85	0.02992	24.70	0.02489	29.99	0.02292
		0 0 2 0 5 2	2/ 00	0.02478	30.01	0.02260
	14.99	0.02953	24.90			
	14.99 15.09 15.09	0.02955 0.02996 0.02974	24.90	0.02478	30.01	0.02286

Table II. Constants for Calculation of Bunsen Solubility Coefficients of Methane by Equation 1

> $A_1 = -67.1962$ A₂ = 99.1624 A, = 27.9015 $B_1 = -0.072909$ $B_2 = 0.041674$ $B_3 = -0.0064603$

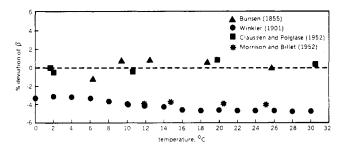


Figure 1. Percent difference of previous Bunsen solubility coefficients, β , for methane in distilled water from those of present work

Table III. Bunsen Solubility Coefficients for Methane Where β is Expressed as mI CH₂ (STP) Dissolved in 1 mI H₂O

Tomo	Salinity, parts per thousand										
Temp, °C	0	10	20	30	32	34	36	38	40		
-2			0.05278	0.04902	0.04830	0.04759	0.04689	0.04620	0.04552		
-1			0.05121	0.04758	0.04689	0.04621	0.04553	0.04487	0.04422		
0	0.05749	0.05346	0.04970	0.04622	0.04555	0.04489	0.04424	0.04360	0.04297		
1	0.05577	0.05188	0.04827	0.04492	0.04427	0.04364	0.04301	0.04240	0.04179		
2	0.05412	0.05039	0.04691	0.04367	0.04305	0.04244	0.04184	0.04125	0.04066		
3	0.05256	0.04896	0.04561	0.04249	0.04189	0.04130	0.04072	0.04015	0.03958		
4	0.05108	0.04761	0.04438	0.04136	0.04078	0.04022	0.03965	0.03910	0.03855		
5	0.04966	0.04631	0.04319	0.04028	0.03973	0.03918	0.03863	0.03810	0.03757		
6	0.04831	0.04508	0.04207	0.03926	0.03872	0.03818	0.03766	0.03714	0.03663		
8	0.04579	0.04278	0.03996	0.03733	0.03683	0.03633	0.03584	0.03535	0.03488		
10	0.04350	0.04068	0.03804	0.03558	0.03510	0.03463	0.03417	0.03372	0.03327		
12	0.04141	0.03876	0.03628	0.03397	0.03352	0.03308	0.03265	0.03222	0.03180		
14	0.03950	0.03701	0.03468	0.03249	0.03207	0.03166	0.03125	0.03084	0.03044		
16	0.03775	0.03540	0.03320	0.03114	0.03074	0.03035	0.02996	0.02958	0.02920		
18	0.03616	0.03394	0.03185	0.02990	0.02952	0.02915	0.02878	0.02842	0.02806		
20	0.03469	0.03259	0.03061	0.02875	0.02840	0.02804	0.02769	0.02735	0.02701		
22	0.03335	0.03135	0.02947	0.02770	0.02736	0.02702	0.02669	0.02636	0.02604		
24	0.03211	0.03021	0.02842	0.02673	0.02640	0.02608	0.02577	0.02545	0.02514		
26	0.03098	0.02916	0.02745	0.02583	0.02552	0.02522	0.02491	0.02461	0.02432		
28	0.02994	0.02819	0.02655	0.02501	0.02471	0.02442	0.02412	0.02384	0.02355		
30	0.02898	0.02731	0.02573	0.02425	0.02396	0.02368	0.02340	0.02312	0.02285		

tained by other workers for distilled water from values reported here are shown in Figure 1. Our results are in good agreement with those reported by Bunsen (2) and Claussen and Polglase (3), but are higher by 3-5% than those reported by Winkler (18) and Morrison and Billet (9). Reasons for the discrepancy between our results and those of Winkler's, which are the most widely quoted, are not clear. It is not attributable to differences in experimental methods and procedures since hydrogen solubility values reported by us (4) and by Winkler (16) were measured by the same respective procedures, and agreement between the two sets of data was good. In addition, Bunsen solubility coefficients for oxygen and nitrogen were measured by Douglas by the method used in this work and agreed well with those obtained by Winkler (17). Standard deviations for a single measurement at constant temperature and pressure ranged from 0.09 to 0.53% (see Table I). Sources of errors in the method used in this work were evaluated in detail by Douglas (5), who estimated the accuracy of the determination to be $\pm 0.26\%$. Impurities in the gas are potential sources of error. Of particular importance is CO₂ since its solubility in water is 500-600 times greater than that of methane. The gas used in this work was analyzed by mass spectrometry, and the CO₂ content was 1 ppm (on a mole basis). The error in the Bunsen solubility coefficient from this level of CO₂ would be less than 0.01%.

Atkinson and Richards (1) reported methane solubilities for seawater of salinity 36‰ in the temperature range 0-30°C. These values were obtained by interpolation of values for distilled water and for seawater having a salinity of 40% and differed from our values by as much as 6.3%. By the Scholander method, Weiss (14) obtained a solubility coefficient of 0.03023 at 15.09°C and salinity 36.425‰ which agrees well with the value 0.03044 obtained by us.

Acknowledgment

The authors thank E. Douglas for use of the gas analyzer and G. V. Pickwell for numerous helpful discussions.

Literature Cited

- (1) Atkinson, L. P., Richards, F. A., Deep-Sea Res., 14, 673 (1967).
- (2)
- (4)
- Atkinson, L. P., Richards, F. A., Deep-German, J. Atkinson, L. P., Richards, F. A., Deep-German, J. Strand, J. Ann. 93, 1 (1855).
 Bunsen, W. F., Polglase, M. F., J. Am. Chem. Soc., 74, 4817 (1952).
 Crozier, T. E., Yamamoto, S., J. Chem. Eng. Data, 19, 242 (1974).
 Douglas, E., J. Phys. Chem., 66, 169 (1964).
 Hindebrand, J. H., Scott, R. L., "The Solubility of Nonelectrolytes", 3rd 1964. (6) Hildebrand, J. H., Scott, R. L.,
- (7) Mishnina, T. A., Avdeeva, O. I., Bozhovskaya, T. K., Mater. Vses. Nauchno Issled. Geol. Inst., 1961, No. 46, 93-110. T. K., Inf. Sb. Vses. (8) Mishnina, T. A., Avdeeva, O. I., Bozhovskaya,
- Nauchno Issled. Geol. Inst., No. 56, 137-45 (1962). Morrison, T. J., Billett, F., J. Chem. Soc., **1952**, p 3819.
- (9)Scholander, P. F., J. Biol. Chem., 167, 235 (1947).
- (10)
- Swinnerton, J. W., Linnenbaum V. J., Cheek, C. H., Environ. Sci. Tech-(11)nol., 3, 836 (1969). (12) Swinnerton, J. W., Lamontagne, R. A., Environ. Sci. Technol., 8, 657
- (1974).
- (13) Weiss, R. F., Deep-Sea Res., 17, 721 (1970). (14)
- Weiss, R. F., private communication, 1975. Williams, R. T., Bainbridge, A. E., *J. Geophys. Res.*, **78**, 2691 (1973). (15)
- Winkler, L. W., Ber., 24, 89 (1891).
- (17) Winkler, L. W., *ibid.*, p 3606.
 (18) Winkler, L. W., *ibid.*, 34, 1408 (1901).

Received for review March 28, 1975. Accepted July 21, 1975.